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Mutual information as a tool for identifying phase transitions in dynamical complex systems
with limited data
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We use a well-known model [T. Vicsek er al., Phys. Rev. Lett. 15, 1226 (1995)] for flocking, to test mutual
information as a tool for detecting order-disorder transitions, in particular when observations of the system are

limited. We show that mutual information is a sensitive indicator of the phase transition location in terms of the
natural dimensionless parameters of the system which we have identified. When only a few particles are
tracked and when only a subset of the positional and velocity components is available, mutual information
provides a better measure of the phase transition location than the susceptibility of the data.
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I. INTRODUCTION

Order-disorder transitions are often found in complex sys-
tems. They have been identified in physical systems such as
Bose-Einstein condensates and ferromagnets and in biologi-
cal, chemical, and financial systems. Phase transitions are
found, for example, in the behavior of bacteria [1], locusts
[2], voting games, and utilization of resource in markets [3].
These systems have in common the property that there is
competition between fluctuations driving the system towards
disorder and inter-element interactions driving the system to-
wards order. Insight into such systems can be gained using
simple models. Although the dynamics of individual ele-
ments are difficult to predict, one can identify macroscopic
parameters that characterize the behavior of the system.
These can be approached through dimensional analysis—
e.g., Buckingham’s II theorem [4].

A generic challenge in real-world measurements of physi-
cal, chemical, biological, or economic systems is that they
yield data sets that are, in essence, sparse. Single elements
such as tracer particles in turbulent flow, tagged birds or
dolphins in a group, or a constituent of a financial index may,
or may not, adequately sample the full underlying system
behavior. In consequence, the behavior of a finite number of
individual elements may, or may not, provide a proxy for the
behavior of the entire system. If the system behavior is
known to exhibit a phase transition, the question arises as to
how this can best be captured from analysis of the dynamics
of individual elements. Previously, for example, both mutual
information (MI) [5-8] and susceptibility have been shown
to be sensitive to the phase transition in the Ising spin model
of ferromagnetism [9]. MI can also extract the correlation, or
dependence, between causally linked but spatiotemporally
separated observed parameters: for example, between in situ
plasma measurements in the solar wind and the ionospheric
response detected by ground-based measurements on Earth
[10] or for example, within the brains of Alzheimer’s disease
patients [11].

Here we compare the use of MI and susceptibility to
quantify the location of the phase transition in the dimen-
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sionless parameter space of the model of Vicsek er al. [12].
There are numerous statistical methods for analyzing sys-
tems with many degrees of freedom, dating back to work by
Helmholtz and Boltzmann in the 19th century; see, for ex-
ample, [13,14] and references therein. The microscopic be-
havior of the system of Vicsek ef al., described below, does
not conserve energy or momentum, and this precludes a mi-
croscopic understanding of energy, momentum, or any re-
lated quantities in the system. The driving characteristic of
the system is entropy: this is added by the random forcing of
the particles and removed by their mutual interactions, which
create correlation. With this in mind, we examine mutual
information as a natural choice for capturing the entropy
flow in the system and characterizing the system state with
respect to its order parameters.

We find that when full knowledge of the system is
available—that is, when all the particles are tracked—the
susceptibility is an accurate method for estimating the posi-
tion of the phase transition in the model of Vicsek et al.
However, if the data are limited to a sample of just a few
particles out of a large number, or a subset of the complete
data, this method is less accurate.

We show that the mutual information of only a few par-
ticles, or of limited data from the whole system, can success-
fully locate the phase transition in dimensionless parameter
space. For example, we find that the MI of a time series of
components of particle position or velocity is sufficient. We
thus show that MI can provide a practical method to detect
order-disorder transitions when only a few particles, or ele-
ments, of the system are observed.

II. VICSEK MODEL

In 1995 Vicsek et al. [12] introduced the self-propelled
particle model in which particles have a constant speed |v]
=v, and a varying direction of motion 6. In the discrete time
interval dt=t,,;—1t, an isolated particle increments its vector
position x,—x,,; by moving with constant speed v, in a
direction 6, which is in turn incremented at each time step.
In the model, particles interact when they are within distance
R of each other, such that the direction of their motion tends
to become oriented with that of their neighbors. This inter-
action is implemented at each step, as shown in Fig. 1, by
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FIG. 1. Multiple particles interact if within a radius R of each
other. Each of the Ny particles within R (here Nx=4) contributes its
angle of propagation to the average <0,'YR), which is assigned to the
particle at the center of R.

replacing the particle’s direction of motion 6, by the average
of those particles, Ng, within distance R, so that ,,;=(6\)
with a random angle 86, also added. The random fluctuation
66, is an independent identically distributed angle in the
range — 7)< 66, =< 7, where 7 characterizes the strength of the
noise for the system. Thus for the ith particle in the system,
after n time steps,

Xy =X, + 03O, (1)
05'1+1 =< nR> + 56;’ (2)
v' =vy(cos @£ +sin 6:1)_?). (3)

Here, direction is defined by the angle from the x axis (£) and
7 is such that 7= 7dt—that is, normalized to the time step of.

There are two limiting cases for the system dynamics:
disorder, where each particle executes a random walk, and
order, where all particles move together with the same veloc-
ity. Figure 2 shows snapshots of the system dynamics for
n=0, p=2m/5=1, and p=4m/5>1. We see that n<<1 is
highly ordered and 7> 1 is highly disordered, and around
n=1 there is a phase transition [15]. As with other critical
systems it is possible to define an order parameter ¢ and a
susceptibility x [12,16-18]. For the Vicsek model, the mag-
nitude of the average velocity of all the particles in the sys-
tem provides a macroscopic order parameter and the variance
of this speed is the susceptibility:

1 N
o= S| 2] (4)
X= (P = ()~ (). ©

Here N denotes the total number of particles in an implemen-
tation of the model of Vicsek et al.

We plot ¢ and y as a function of 7 in Fig. 3. In the
thermodynamic limit (N—,[— o) where [ is the system
size, the susceptibility would tend to infinity at the critical
noise 7,, where the phase transition occurs. In a finite-sized
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FIG. 2. The effect of increasing noise on a typical Vicsek system
from ordered dynamics (top: 7=0) to disordered dynamics (bottom:
n=4/5) and in the vicinity of the phase transition (middle: 7
=2m/5). Particle velocity vectors are plotted as arrows at the posi-
tion of each particle in the x-y plane. The system has parameters
N=3000, |v|=0.15, and R=0.5. This corresponds to I1,=0.3, T3
=0.94, and IT,= 7, see Egs. (6)—(8).

realization of the system, the susceptibility has a sharp but
finite maximum at the critical noise at which the phase tran-
sition occurs. Finite-size effects make the peak location un-
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FIG. 3. (Color online) An example of a typical Vicsek system.
The order parameter ¢ (line) is maximum for zero noise and falls to
a constant small value at high noise. The susceptibility x (crosses)
peaks at the critical point 7.~ 1.33 for the system. The system
parameters are [1,=0.3 and [15=0.94, with N=3000.

certain, but it is still possible to obtain an estimate of the
critical noise 7.

The system can be analyzed using Buckingham’s II theo-
rem [4], and three independent dimensionless quantities can
be found that characterize its behavior. The first of these (II,)
is the amplitude of the normalized noise 7, the second (II,)
is the ratio of the distance traveled in one time step vydt to
the interaction radius R, and the third (Il;) is the average
number of particles within a circle of one interaction radius
R:

Hl =n= 7]5t, (6)
I, = vy St/R, (7)
I, = 7R%p. (8)

These three parameters determine the behavior of the system
in the thermodynamic limit (N—o, [—, R and p finite)
where p denotes the number density of particles over the
whole system.

The system size [ affects the number of interactions that
occur. If [ is finite and the system is periodic as here, the
finite system size increases the chance of two randomly cho-
sen particles interacting, compared to the limit of infinite /.
The system only approaches the thermodynamic limit when
the finite interaction radius R <</. Conversely, for example, if
the interaction radius is half the diagonal size of the system,
then all the particles interact with each other at any given
moment. This implies a fourth parameter reflecting the finite
size of any computer-based realization of this model:

In the thermodynamic limit we have N— %, [— %, while R
and p=N/[? are finite, so that IT,— 0 and II,_; are finite and
specify the system.
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FIG. 4. (Color online) Phase transition diagram contours for the
Vicsek model around I15=1. Top panel: the effect of changing I15,
from I1;=0.2 (dark blue contours, left-hand side) to I13=2.0 (dark
red contours, right-hand side) in steps of 0.2, on the position of the
phase transition in the II;, II, plane. Bottom panel: the effect of
changing I1,, from I1,=0.05 (dark blue, left-hand side) to I1,=0.5
(dark red, right-hand side) in steps of 0.05, on the position of the
phase transition in the II;, II5 plane.

III. SYSTEM PHASE SPACE

For given values of II, and I15, we run simulations of the
Vicsek system for a range of values of II; to determine the
value II;=II{ at which the susceptibility y peaks and thus
the phase transition occurs. By repeating this operation for a
set of parameter values of II, and II;, we obtain the full set
of coordinates at which the phase transition is located for a
region of the phase space around Il;=1. We show this
graphically in Fig. 4 where we plot contours of II5(I1;,II,)
in the upper panel and II5(11,,115), in the lower panel. These
plots confirm that there is a smooth, well-defined surface of
I1{, 115, and I15; they can be used to inform the choice of I1;,
I1,, and TI; for the next section.

In relation to recent work by Nagy et al. [19], we see from
Fig. 4 that the speed v, of the particles, which is a variable
within II,, has a characteristic effect above vy=0.3. The
bottom panel of Fig. 4 shows that, for constant 115, the phase
transition becomes hard to detect and the contours start to
break up as II, is increased above approximately 0.3. This is
a complementary demonstration of the statement made in
[19] that the phase transition becomes first order in the high-
velocity (vy=0.3) regime.

IV. MUTUAL INFORMATION

Mutual information quantifies the information content
shared by two signals A and B. For discrete signals we can
write the MI as
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_ s P(ai’b') )
I(A,B) = E, P(a;b j)10g2<—LP @rivy) (10)

Here the signal A has been partitioned into an alphabet (a
library of possible values the signal can take) A
={a,...,qa;,...,a,}; where a; and a,, are the extrema of A
found in all data considered. The discretized signal takes
value a; with probability P(q;) and similarly for b; we have
P(b;), while P(a;,b;) is the joint probability of a; and b,
occurring together. The chosen base of the logarithm defines
the units in which the mutual information is measured. Nor-
mally base 2 is used, so that the mutual information is mea-
sured in bits. If we define the entropy of a signal as:

H(A) =~ 2 P(a)logs[P(a)], (11)

then MI can be written as a combination of entropies [5]:
1(A,B) = H(A) + H(B) — H(A,B). (12)

The calculation of the entropies needed to form the MI is
not trivial, as there is some freedom in the method of dis-
cretization of the signals and in the method used to estimate
the probabilities P(a;), P(b;), and P(a;,b;). There are many
different methods currently used, summarized and compared
by Cellucci et al. [6] and Kraskov er al. [7].

MI has been used in the analysis of the two-dimensional
Ising model by Matsuda et al. [9]. Importantly the critical
temperature for the Ising model is identified precisely by the
peak in the mutual information of the whole system. This
peak survives the coarse graining of the system very well,
which raises the possibility that mutual information can be
used in the study of other complex systems.

V. IDENTIFYING THE PHASE TRANSITION
A. Full system mutual information

In the two-dimensional (2D) Vicsek system there are three
variables for each of the N particles: their positions (x',y’)
and the orientation of their velocities #, giving three signals
X, Y, and 0, each containing N measurements at every time
step. The simplest discretization of these signals x', y, and ¢
is to cover the range of the signals with equally spaced bins,
so for position coordinate X we have m bins X; with width
SX. Then, if n particles are in the range (X;—X;+6X), we
have probabilities

PX;) = %, (13)

2 P(X)=1. (14)

The single and joint probabilities P(Y;), P(®y), P(X;,0,),
and P(Y;,0,) are calculated in a similar manner.

The key factor governing the accuracy with which MI is
measured is to optimize the size of the bins used in the above
procedure. If the bins are too large, then resolution is lost and
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the exact details of small scale structure and clustering can-
not be identified. If the bins are too small, then at high noise
the probability of finding a particle at a given point does not
become smoothed over the whole system because individual
particles can be resolved, giving P(x;,y;) # P(x;) P(y;), even
though the system is in a well-mixed random state.

There is no ideal bin structure determined for this method
of MI calculation [6,7]. The Vicsek model has two natural
length scales, R the interaction radius and / the box size, so
that a good length scale to choose for discretization, when a
snapshot of the whole system is being used, is the interaction
radius R. Thus all our mutual information calculations made
on the whole system use a bin size of 2R, the diameter of the
circle of interaction; the bins are therefore squares of size 4R
in the (x,y) plane. When 6 is discretized the same number of
bins are used as for x or y because there is no natural size for
bins in 6.

Given full knowledge of x;, y;, and 6; for all N particles in
the system over a large number of time steps, several differ-
ent calculations of mutual information can be made. We find
that the most accurate form of mutual information for the
whole system is that calculated between the x or y position
and 6. Thus we perform the following calculation at each
time step n once the system has reached a stable state:

~ P(X,0)
1(X,0) = 2, P(X,, ®j)1og2<m), (15)

_ P(Yl’®)
1(Y,0) _%P(Yi,(@j)logz(m), (16)

I=I(X,®)+I(Y,®)’ (17)
2
and average over all time steps for which MI is measured.

We compare the MI as calculated using the above method
and the susceptibility as a function of normalized noise 7 in
Fig. 5. At large » the MI falls to zero as X, Y, and O tend to
uncorrelated noise (see also [9]). We would also expect the
MI to fall to zero at sufficiently low 7 as the system becomes
ordered and this behavior is also seen within the errors. The
errors on our measurements of MI are calculated from the
standard deviation of measurements of MI calculated over 50
simulations at each noise 7. The error on the susceptibility is
calculated in the same manner.

The error bars become larger at low 7 because the mutual
information includes the signatures of spatial clustering as
well as velocity clustering in the measurement. Thus at low
7, when extended clusters form, the mutual information will
give a higher value for the more spatially extended axis of
the cluster and a lower value for the less extended axis of the
cluster. This implies that the shape and orientation of the
(usually single) large cluster formed at low noise influences
the mutual information. Different measurements of MI thus
arise for each implementation of the model, giving rise to the
error seen at low #. This could be corrected by using other
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FIG. 5. (Color online) The mutual information I (circles) de-
fined by Eq. (17) peaks at approximately the same point as the
susceptibility x (crosses) defined by Eq. (5). The critical noise 7,
~1.33 is marked. The system parameters are I1,=0.15 and Il;
=0.98, with N=3000 particles. Error bars on the susceptibility are
largest around 7)., unlike those on mutual information.

approaches to computing MI—for example, recurrence plots
[8,10] or a different distribution of bins; these are more com-
putationally intensive, however.

When estimated as the standard deviation over 50 re-
peated runs of the simulation, the error is found to be con-
siderably larger, as a fraction of the overall measurement, for
the susceptibility than for the MI. This arises since the sus-
ceptibility is simply an average fluctuation over all the ve-
locity vectors of the system, whereas the MI also directly
reflects the level of spatial “clumpiness” (that is, spatial cor-
relation) of the particles. The detailed spatial distribution var-
ies from one simulation to the next, but at fixed II, , the
degree of clumpiness does not. Mutual information is able to
quantify clustering (correlation in space as well as velocity)
in a simple dynamical complex system, in a manner that
identifies the order-disorder phase transition.

B. Mutual information from limited data

Observations of many real-world systems typically pro-
vide only a subset of the full-system information, which here
comprises the positions and velocities of all N interacting
particles. We now consider results from the Vicsek model
using only very limited amounts of data. The mutual infor-
mation and susceptibility are now calculated on a 7=5000
step time series of positional and velocity data for n=10
particles out of the N=3000 simulated. To optimize both
methods, the data for each particle time series are cut into S
sections, labeled s=1,...,S, of length N,=7/S steps. This
gives us nS pseudosystems, relying on the assumption that
one particle over N, steps is equivalent to N, particles at one
step. This is a reasonable assumption to make for the Vicsek
model as it is ergodic while 7 remains constant.
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FIG. 6. (Color online) The mutual information I (circles) calcu-
lated using time series from only 10 particles for 5000 time steps,
with S=10, compared to the average susceptibility y (crosses) for
the same data using S" =10 subsections to calculate ¥ and with the
critical noise 7.~ 1.33 marked. System parameters are [1,=0.3 and
[1,=0.94, with N=3000 particles.

To calculate the susceptibility, we need to estimate the
variance of the average velocity of each of these nS pseudo-
systems. We therefore cut each section s into S" further sub-
sections s’, calculate the average velocity (;b;, of these sub-
sections, and find their variance, giving X.l; the pseudosystem
susceptibility. This is done for each pseudosystem individu-
ally to give x; and averaged over all nS pseudosystems to
give Y, the average variance of the average velocity for all
pseudosystems:

, 7188’
6= > il (18)
00 | k=1
1 2 2
= §(<¢s,>—<¢sr> )\ (19)
1 S n
X=—22 2 X. (20)
nSa:l i=1

The result is shown in Fig. 6 where we also plot the
mutual information I(X,®) from Eq. (15), but now as nS
time series; the parameters used are n=10, S=10, and S’
=10. The error bars are calculated as the standard deviation
of the 100 measurements made using the different pseudo-
systems of length 7/5=500 time steps. These values for n, S,
and S’ are chosen so as to limit the data in a realistic way.
n=10 is a suitably small subset of the N=3000 particles. S
=10 cuts the data into segments sufficiently long (500 time
steps) to be treated independently. S’=10 is chosen so that
each section s' is still long enough (50 time steps) to make as
good an estimate of the average velocities ¢;, as possible,
but allows enough of these measurements to be made to
reduce the error in the measurement of x'.
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FIG. 7. The cross correlation between a randomly chosen par-
ticle and 9 others, calculated using a time series with 5000 steps.
The top panel shows the average cross correlation between ' and
¢, 2<k=<10. The bottom panel shows the average cross correla-
tion between x!' and x¥, 2<k<10. System parameters are 11,=0.3
and 115=0.94, with N=3000 particles.

The system is identical to that shown in Fig. 5, and the
phase transition is at the same noise, 7.~ 1.33. Near their
respective peaks, the error in the mutual information remains
smaller than that in the susceptibility and so MI better iden-
tifies the peak. The peak in the susceptibility no longer co-
incides with 7. and is shifted to the higher-noise side of the
phase transition. This occurs because the susceptibility is
now measured on too small a sample of data: only 50 angles
Hi are averaged to find each subsection velocity ¢;,. Such a
small ensemble average results in a large deviation in the
average velocity from the expected value.

For comparison with a linear measure, we calculate the
cross correlation for our ten trajectories. We choose one of
the particles at random and compute its cross correlation
with each of the remaining nine. The average of these is
plotted in Fig. 7. The average cross correlation between
angles #' and ¢, 2<k=<10, in the top panel shows strong
correlation at low noise, as expected. This cross correlation
declines as noise increases, but not smoothly, because the
correlation depends on the exact dynamics of the particles
considered. Angular cross correlation reaches zero around
the phase transition, but does not provide an accurate loca-
tion for the critical noise. In the bottom panel of Fig. 7 the
cross correlation between x! and x¥, 2<k<=10, provides no
reliable indication of the position of the phase transition. The
cross correlation does become more variable on the higher-
noise side of the graph but this effect cannot be used to
accurately find the critical noise 7.

The value of using mutual information can be seen when
the available data are restricted still further. Let us consider
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FIG. 8. The mutual information I(X,AX) (circles) calculated
using a time series from only 10 particles for 5000 time steps, with
S§=10 and the critical noise 7.~ 1.33 marked. System parameters
are [1,=0.3 and 113=0.94, with N=3000 particles.

signals derived from one component of the particle trajectory
only, equivalent to a line-of-sight measurement. We then
have one of the position coordinates x}; and the instantaneous
x component of the velocity, Ax,=v, cos(#,). The suscepti-
bility is calculated as in Egs. (18)—(20), but using the average
one-dimensional velocities Ax;:

78S’

SS’
E Ax |, (21)

i

- §<<¢§,> (), (22)

X= (23)

22X

||M=

1
nS

The mutual information is calculated for each section of the
x only (and later y only) components of the time series for
each particle using a suitable binning:

~ P(X;,AX))
1(X,AX) = 2, P(Xi,AXj)logz(M), (24)

~ P(Y,AY)
I(Y,AY) = 2, P(Yi,AYj)log2<m>. (25)

Figure 8 shows the mutual information calculated from
the data in this manner with S=10. The peak in the mutual
information is at approximately the correct value of 7 (7,
~1.33). Figure 9 shows for comparison the susceptibility
calculated over the X data as in Egs. (21)—(23). We see that
although there is a peak, it no longer identifies 7— 7, accu-
rately. The peak is broader and has larger error bars than in
Fig. 8, giving a large uncertainty in identifying 7.
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FIG. 9. The susceptibility x (crosses) calculated using a time
series of one-dimensional data {X,AX} from only 10 particles for
5000 time steps, with S=10 and the critical noise 7.~ 1.33 marked.
System parameters are I[,=0.3 and I15=0.94, with N=3000
particles.

The peak in Fig. 8 is shifted to the low-noise side of the
phase transition and shows some scatter. This can be under-
stood by looking at the same data using a different value of
the interval S. In Fig. 10 we show the same data analyzed
using S=1; that is, we consider one time series of length
5000 time steps for each of 10 particles and obtain MI aver-
aged over these 10. We plot I(X,AX) (circles) and I(Y,AY)
(squares). The measurements overlap within errors on the
high-noise side of the phase transition but separate into two
distinct branches, containing both I(X,AX) and I(Y,AY), on
the low-noise side.

One potential source of this behavior is that, as the system
becomes ordered at << 7,, the particles clump together. This
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FIG. 10. (Color online) The mutual information I(X,AX)
(circles) and I(Y,AY) (squares) calculated using a time series from
only 10 particles for 5000 steps, with S=1 and the critical noise
7.~ 1.33 marked. System parameters are 11,=0.3 and [15=0.94,
with N=3000 particles.
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FIG. 11. The minimum results from mutual information mea-
surements /(X,AX) and I(Y,AY) calculated using a time series from
only 10 particles for 5000 steps, with S=1 and the critical noise
7.~ 1.33 marked. System parameters are 11,=0.3 and 113=0.94,
with N=3000 particles.

implies that the particles together take on a preferred direc-
tion of motion; in addition, a clump may be elongated in a
particular spatial direction. The effectiveness of MI will then
depend on whether our single-component (line-of-sight) data
are aligned along, or perpendicular to, the characteristic di-
rections of this clump. Mutual information measured in
terms of coordinates aligned with the preferred direction of
motion is increased by the dispersion of particle positions
and velocities, whereas MI measured in term of perpendicu-
lar coordinates is decreased because the positional and ve-
locity dispersions are smaller in this direction. Anomalously
high MI measurements result from making measurements
along the preferred direction of motion; large relative veloci-
ties lead to anomalously high peaks on the low-noise side of
the phase transition, making it appear to be shifted towards
7n=0.

Finally in Fig. 11 we plot the minimum of I(X,AX) and
I(Y,AY) for each value of » from Fig. 10 and see that a clear
peak emerges at 7= 7., where the error bars are the smallest.
This outcome obviates the difficulty that arises if we only
allow knowledge of {X,AX}, for example, when it would be
necessary to exclude high measurements of MI at low noise,
as discussed above.

VI. CONCLUSIONS

The Vicsek model [12] is used here to test the potential of
measurements of order and clustering that exploit mutual
information in dynamical complex systems. We find that
when complete knowledge of the system is available, the
mutual information has a smaller error than the susceptibility
(Fig. 5). Using Buckingham’s I1 theorem, the set of dimen-
sionless parameters that capture the phase space of the Vic-
sek model have been presented as a complete set for the first
time.
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When data are limited to observations of only 10 particles
out of 3000, the error in the mutual information remains
comparatively small and the mutual information thus pro-
vides a better measurement than susceptibility of the position
of the order-disorder phase transition (Fig. 6). When data are
limited still further, such that only one line-of-sight compo-
nent of the particle motion is available, the mutual informa-
tion measurement remains sensitive enough to identify the
critical noise of the phase transition, while the susceptibility
does not (Figs. 8—11). In this case the mutual information
also provides an indication of the preferred axial direction of
clumped particle motion at low noise. Anomalously high mu-
tual information estimates in this ordered phase indicate that
the particles sampled are mostly moving along the dimension
being measured; low estimates indicate that the particles are
moving perpendicularly. This is remarkable given that the
susceptibility does not contain this information and that the
MI is a probabilistic measurement.
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Real-world data are often in the form of the final data
studied here, a limited sample from a much larger set, mea-
sured in fewer dimensions than those of the original system:
for example, line-of-sight measurements of wind speed mea-
sured by an anemometer at a weather station, or satellite
measurements of the solar wind. It has been shown here that
mutual information can provide an effective measure of the
onset of order and may provide a viable technique for real-
world data with its inherent constraints.
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